Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(7): 1172-1177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372634

RESUMO

The activation of the CP/LP C3 proconvertase complex is a key event in complement activation and involves cleavage of C4 and C2 by the C1s protease (classical pathway) or the mannose-binding lectin-associated serine protease (MASP)-2 (lectin pathway). Efficient cleavage of C4 by C1s and MASP-2 involves exosites on the complement control protein and serine protease (SP) domains of the proteases. The complement control protein domain exosite is not involved in cleavage of C2 by the proteases, but the role of an anion-binding exosite (ABE) on the SP domains of the proteases has (to our knowledge) never been investigated. In this study, we have shown that the ABE on the SP of both C1s and MASP-2 is crucial for efficient cleavage of C2, with mutant forms of the proteases greatly impaired in their rate of cleavage of C2. We have additionally shown that the site of binding for the ABE of the proteases is very likely to be located on the von Willebrand factor domain of C2, with the precise area differing between the enzymes: whereas C1s requires two anionic clusters on the von Willebrand factor domain to enact efficient cleavage of C2, MASP-2 apparently only requires one. These data provide (to our knowledge) new information about the molecular determinants for efficient activation of C2 by C1s and MASP-2. The enhanced view of the molecular events underlying the early stages of complement activation provides further possible intervention points for control of this activation that is involved in a number of inflammatory diseases.


Assuntos
Ativação do Complemento , Lectina de Ligação a Manose , Serina Proteases Associadas a Proteína de Ligação a Manose , Complemento C1s , Complemento C4/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Domínios Proteicos , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Fator de von Willebrand , Humanos , Células HEK293
2.
Chembiochem ; 25(3): e202300744, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055188

RESUMO

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Assuntos
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Peptídeos/farmacologia , Sítios de Ligação
3.
J Periodontal Res ; 58(3): 544-552, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002616

RESUMO

BACKGROUND AND OBJECTIVE: Protease-activated receptor-2 (PAR2 ), a pro-inflammatory G-protein coupled receptor, has been associated with pathogenesis of periodontitis and the resulting bone loss caused by oral pathogens, including the keystone pathogen Porphyromonas gingivalis (P. gingivalis). We hypothesised that administration of a PAR2 antagonist, GB88, might prevent inflammation and subsequent alveolar bone resorption in a mouse model of periodontal disease. METHODS: Periodontitis was induced in mice by oral inoculations with P. gingivalis for a total of eight times over 24 days. The infected mice were treated with either GB88 or vehicle for the duration of the trial. Following euthanasia on day 56, serum was collected and used for the detection of mast cell tryptase. The right maxillae were defleshed and stained with methylene blue to measure the exposed cementum in molar teeth. The left maxillae were prepared for cryosections followed by staining for tartrate-resistant acid phosphatase to identify osteoclasts or with toluidine blue to identify mast cells. Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of inflammatory cytokines in the gingival tissue. Supernatants of T-lymphocyte cultures isolated from the regional lymph nodes were assayed using a cytometric bead array to measure the Th1/Th2/Th17 cytokine levels. RESULTS: Measurement of the exposed cementum showed that GB88 reduced P. gingivalis-induced alveolar bone loss by up to 69%. GB88 also prevented the increase in osteoclast numbers observed in the infected mice. Serum tryptase levels were significantly elevated in both the infected groups, and not altered by treatment. RT-qPCR showed that GB88 prevented the upregulation of Il1b, Il6, Ifng and Cd11b. In T-lymphocyte supernatants, only IFNγ and IL-17A levels were increased in response to infection, but this was prevented by GB88 treatment. CONCLUSIONS: GB88 significantly reduced osteoclastic alveolar bone loss in mice infected with P. gingivalis, seemingly by preventing the upregulation of several inflammatory cytokines. PAR2 antagonism may be an effective treatment strategy for periodontal disease.


Assuntos
Perda do Osso Alveolar , Doenças Periodontais , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/patologia , Receptor PAR-2 , Doenças Periodontais/complicações , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/complicações , Porphyromonas gingivalis , Citocinas/análise , Inflamação , Modelos Animais de Doenças
4.
Mol Immunol ; 126: 8-13, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717572

RESUMO

The serpin, C1-inhibitor (also known as SERPING1), plays a vital anti-inflammatory role in the body by controlling pro-inflammatory pathways such as complement and coagulation. The inhibitor's action is enhanced in the presence of polyanionic cofactors, such as heparin and polyphosphate, by increasing the rate of association with key enzymes such as C1s of the classical pathway of complement. The cofactor binding site of the serpin has never been mapped. Here we show that residues Lys284, Lys285 and Arg287 of C1-inhibitor play key roles in binding heparin and delivering the rate enhancement seen in the presence of polyanions and thus most likely represent the key cofactor binding residues for the serpin. We also show that simultaneous binding of the anion binding site of C1s by the polyanion is required to deliver the rate enhancement. Finally, we have shown that it is unlikely that the two positively charged zones of C1-inhibitor and C1s interact in the encounter complex between molecules as ablation of the charged zones did not in itself deliver a rate enhancement as might have been expected if the zones interacted. These insights provide crucial information as to the mechanism of action of this key serpin in the presence and absence of cofactor molecules.


Assuntos
Proteína Inibidora do Complemento C1/metabolismo , Complemento C1s/antagonistas & inibidores , Polímeros/metabolismo , Sítios de Ligação/genética , Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/isolamento & purificação , Complemento C1s/metabolismo , Heparina/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Polieletrólitos , Polifosfatos/metabolismo , Ligação Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
5.
PLoS Genet ; 15(10): e1008435, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613892

RESUMO

Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Pectobacterium/genética , Peptídeo Hidrolases/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Ferredoxinas/metabolismo , Genes Bacterianos/fisiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica/fisiologia , Óperon/fisiologia , Pectobacterium/metabolismo , Peptídeo Hidrolases/metabolismo
6.
Biochimie ; 166: 194-202, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31306685

RESUMO

Ananain (EC 3.4.22.31) accounts for less than 10% of the total enzyme in the crude pineapple stem extract known as bromelain, yet yields the majority of the proteolytic activity of bromelain. Despite a high degree of sequence identity between ananain and stem bromelain, the most abundant bromelain cysteine protease, ananain displays distinct chemical properties, substrate preference and inhibitory profile compared to stem bromelain. A tripeptidyl substrate library (REPLi) was used to further characterize the substrate specificity of ananain and identified an optimal substrate for cleavage by ananain. The optimal tripeptide, PLQ, yielded a high kcat/Km value of 1.7 x 106 M-1s-1, with cleavage confirmed to occur after the Gln residue. Crystal structures of unbound ananain and an inhibitory complex of ananain and E-64, solved at 1.73 and 1.98 Å, respectively, revealed a geometrically flat and open S1 subsite for ananain. This subsite accommodates diverse P1 substrate residues, while a narrow and deep hydrophobic pocket-like S2 subsite would accommodate a non-polar P2 residue, such as the preferred Leu residue observed in the specificity studies. A further illustration of the atomic interactions between E-64 and ananain explains the high inhibitory efficiency of E-64 toward ananain. These data reveal the first in depth structural and functional data for ananain and provide a basis for further study of the natural properties of the enzyme.


Assuntos
Ananas/enzimologia , Bromelaínas/química , Cisteína Endopeptidases/química , Extratos Vegetais/química , Proteínas de Plantas/química , Sítios de Ligação , Cinética , Modelos Moleculares , Especificidade por Substrato
7.
Nat Commun ; 9(1): 1395, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643377

RESUMO

Bacterial autotransporters comprise a C-terminal ß-barrel domain, which must be correctly folded and inserted into the outer membrane to facilitate translocation of the N-terminal passenger domain to the cell exterior. Once at the surface, the passenger domains of most autotransporters are folded into an elongated ß-helix. In a cellular context, key molecules catalyze the assembly of the autotransporter ß-barrel domain. However, how the passenger domain folds into its functional form is poorly understood. Here we use mutational analysis on the autotransporter Pet to show that the ß-hairpin structure of the fifth extracellular loop of the ß-barrel domain has a crucial role for passenger domain folding into a ß-helix. Bioinformatics and structural analyses, and mutagenesis of a homologous autotransporter, suggest that this function is conserved among autotransporter proteins with ß-helical passenger domains. We propose that the autotransporter ß-barrel domain is a folding vector that nucleates folding of the passenger domain.


Assuntos
Toxinas Bacterianas/química , Enterotoxinas/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas Recombinantes/química , Serina Endopeptidases/química , Sistemas de Secreção Tipo V/química , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Enterotoxinas/genética , Enterotoxinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Termodinâmica , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
8.
J Immunol ; 199(11): 3883-3891, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061764

RESUMO

Complement is crucial to the immune response, but dysregulation of the system causes inflammatory disease. Complement is activated by three pathways: classical, lectin, and alternative. The classical and lectin pathways are initiated by the C1r/C1s (classical) and MASP-1/MASP-2 (lectin) proteases. Given the role of complement in disease, there is a requirement for inhibitors to control the initiating proteases. In this article, we show that a novel inhibitor, gigastasin, from the giant Amazon leech, potently inhibits C1s and MASP-2, whereas it is also a good inhibitor of MASP-1. Gigastasin is a poor inhibitor of C1r. The inhibitor blocks the active sites of C1s and MASP-2, as well as the anion-binding exosites of the enzymes via sulfotyrosine residues. Complement deposition assays revealed that gigastasin is an effective inhibitor of complement activation in vivo, especially for activation via the lectin pathway. These data suggest that the cumulative effects of inhibiting both MASP-2 and MASP-1 have a greater effect on the lectin pathway than the more potent inhibition of only C1s of the classical pathway.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C1/antagonistas & inibidores , Inativadores do Complemento/química , Via Clássica do Complemento/efeitos dos fármacos , Lectina de Ligação a Manose da Via do Complemento/efeitos dos fármacos , Sanguessugas/química , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Peptídeos/química , Inibidores de Serino Proteinase/química , Animais , Domínio Catalítico/efeitos dos fármacos , Células Cultivadas , Inativadores do Complemento/farmacologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Peptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Inibidores de Serino Proteinase/farmacologia
9.
J Immunol ; 198(12): 4728-4737, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28484054

RESUMO

The complement system is a front-line defense system that opsonizes and lyses invading pathogens. To survive, microbes exposed to serum must evade the complement response. To achieve this, many pathogens recruit soluble human complement regulators to their surfaces and hijack their regulatory function for protection from complement activation. C1 esterase inhibitor (C1-INH) is a soluble regulator of complement activation that negatively regulates the classical and lectin pathways of complement to protect human tissue from aberrant activation. In this article, we show that Plasmodium falciparum merozoites, the invasive form of blood stage malaria parasites, actively recruit C1-INH to their surfaces when exposed to human serum. We identified PfMSP3.1, a member of the merozoite surface protein 3 family of merozoite surface proteins, as the direct interaction partner. When bound to the merozoite surface, C1-INH retains its ability to complex with and inhibit C1s, MASP1, and MASP2, the activating proteases of the complement cascade. P. falciparum merozoites that lack PfMSP3.1 showed a marked reduction in C1-INH recruitment and increased C3b deposition on their surfaces. However, these ΔPfMSP3.1 merozoites exhibit enhanced invasion of RBCs in the presence of active complement. This study characterizes an immune-evasion strategy used by malaria parasites and highlights the complex relationship between merozoites and the complement system.


Assuntos
Antígenos de Protozoários/metabolismo , Ativação do Complemento , Proteína Inibidora do Complemento C1/metabolismo , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Antígenos de Protozoários/imunologia , Proteína Inibidora do Complemento C1/genética , Complemento C1s/antagonistas & inibidores , Complemento C1s/imunologia , Complemento C1s/metabolismo , Eritrócitos/parasitologia , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Proteínas de Membrana/imunologia , Merozoítos/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo
10.
Blood ; 128(13): 1766-76, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27338096

RESUMO

The complement system plays a key role in innate immunity, inflammation, and coagulation. The system is delicately balanced by negative regulatory mechanisms that modulate the host response to pathogen invasion and injury. The serpin, C1-esterase inhibitor (C1-INH), is the only known plasma inhibitor of C1s, the initiating serine protease of the classical pathway of complement. Like other serpin-protease partners, C1-INH interaction with C1s is accelerated by polyanions such as heparin. Polyphosphate (polyP) is a naturally occurring polyanion with effects on coagulation and complement. We recently found that polyP binds to C1-INH, prompting us to consider whether polyP acts as a cofactor for C1-INH interactions with its target proteases. We show that polyP dampens C1s-mediated activation of the classical pathway in a polymer length- and concentration-dependent manner by accelerating C1-INH neutralization of C1s cleavage of C4 and C2. PolyP significantly increases the rate of interaction between C1s and C1-INH, to an extent comparable to heparin, with an exosite on the serine protease domain of the enzyme playing a major role in this interaction. In a serum-based cell culture system, polyP significantly suppressed C4d deposition on endothelial cells, generated via the classical and lectin pathways. Moreover, polyP and C1-INH colocalize in activated platelets, suggesting that their interactions are physiologically relevant. In summary, like heparin, polyP is a naturally occurring cofactor for the C1s:C1-INH interaction and thus an important regulator of complement activation. The findings may provide novel insights into mechanisms underlying inflammatory diseases and the development of new therapies.


Assuntos
Proteínas Inativadoras do Complemento 1/metabolismo , Proteínas do Sistema Complemento/metabolismo , Polifosfatos/metabolismo , Sítios de Ligação , Plaquetas/imunologia , Plaquetas/metabolismo , Células Cultivadas , Proteína Inibidora do Complemento C1 , Complemento C1s/química , Complemento C1s/metabolismo , Complemento C2/metabolismo , Complemento C4/metabolismo , Via Clássica do Complemento , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Heparina/metabolismo , Humanos , Técnicas In Vitro , Polifosfatos/química
11.
Biochimie ; 122: 227-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26403495

RESUMO

Proteolysis has a critical role in transmitting information within a biological system and therefore an important element of biology is to determine the subset of proteins amenable to proteolysis. Until recently, it has been thought that proteases cleave native protein substrates only within solvent exposed loops, but recent evidence indicates that cleavage sites located within α-helices can also be cleaved by proteases, despite the conformation of this secondary structure being generally incompatible with binding into an active site of a protease. In this study, we address the mechanism by which a serine endopeptidase, thrombin, recognizes and cleaves a target sequence located within an α-helix. Thrombin was able to cleave a model substrate, protein G, within its α-helix when a suitable cleavage sequence for the enzyme was introduced into this region. However, structural data for the complex revealed that thrombin was not perturbing the structure of the α-helix, thus it was not destabilizing the helix in order to allow it to fit within its active site. This indicated that thrombin was only cleaving within the α-helix when it was in an unfolded state. In support of this, the introduction of destabilizing mutations within the protein increased the efficiency of cleavage by the enzyme. Our data suggest that a folded α-helix cannot be proteolytically cleaved by thrombin, but the species targeted are the unfolded conformations of the native state ensemble.


Assuntos
Proteínas de Bactérias/metabolismo , Estrutura Secundária de Proteína , Desdobramento de Proteína , Serina Proteases/metabolismo , Trombina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteólise , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
Biochimie ; 121: 60-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26616008

RESUMO

The M17 aminopeptidase from the carcinogenic gastric bacterium Helicobacter pylori (HpM17AP) is an important housekeeping enzyme involved in catabolism of endogenous and exogenous peptides. It is implicated in H. pylori defence against the human innate immune response and in the mechanism of metronidazole resistance. Bestatin inhibits HpM17AP and suppresses H. pylori growth. To address the structural basis of catalysis and inhibition of this enzyme, we have established its specificity towards the N-terminal amino acid of peptide substrates and determined the crystal structures of HpM17AP and its complex with bestatin. The position of the D-phenylalanine moiety of the inhibitor with respect to the active-site metal ions, bicarbonate ion and with respect to other M17 aminopeptidases suggested that this residue binds to the S1 subsite of HpM17AP. In contrast to most characterized M17 aminopeptidases, HpM17AP displays preference for L-Arg over L-Leu residues in peptide substrates. Compared to very similar homologues from other bacteria, a distinguishing feature of HpM17AP is a hydrophilic pocket at the end of the S1 subsite that is likely to accommodate the charged head group of the L-Arg residue of the substrate. The pocket is flanked by a sodium ion (not present in M17 aminopeptidases that show preference for L-Leu) and its coordinating water molecules. In addition, the structure suggests that variable loops at the entrance to, and in the middle of, the substrate-binding channel are important determinants of substrate specificity of M17 aminopeptidases.


Assuntos
Aminopeptidases/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/enzimologia , Humanos , Leucina/análogos & derivados , Leucina/metabolismo , Ligação Proteica , Especificidade por Substrato
13.
Mol Immunol ; 67(2 Pt B): 287-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26130224

RESUMO

The interaction between mannose-binding lectin [MBL]-associated serine protease-2 (MASP-2) and its first substrate, C4 is crucial to the lectin pathway of complement, which is vital for innate host immunity, but also involved in a number of inflammatory diseases. Recent data suggests that two areas outside of the active site of MASP-2 (so-called exosites) are crucial for efficient cleavage of C4: one at the junction of the two complement control protein (CCP) domains of the enzyme and the second on the serine protease (SP) domain. Here, we have further investigated the roles of each of these exosites in the binding and cleavage of C4. We have found that both exosites are required for high affinity binding and efficient cleavage of the substrate protein. Within the SP domain exosite, we have shown here that two arginine residues are most important for high affinity binding and efficient cleavage of C4. Finally, we show that the CCP domain exosite appears to play the major role in the initial interaction with C4, whilst the SP domain exosite plays the major role in a secondary conformational change between the two proteins required to form a high affinity complex. This data has provided new insights into the binding and cleavage of C4 by MASP-2, which may be useful in the design of molecules that modulate this important interaction required to activate the lectin pathway of complement.


Assuntos
Complemento C4/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Proteínas Imobilizadas/metabolismo , Cinética , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Fatores de Tempo
14.
Front Immunol ; 5: 444, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278939

RESUMO

The C1s protease of the classical complement pathway propagates the initial activation of this pathway of the system by cleaving and thereby activating the C4 and C2 complement components. This facilitates the formation of the classical pathway C3 convertase (C4bC2a). C1s has a Lys residue located at position 628 (192 in chymotrypsin numbering) of the SP domain that has the potential to partially occlude the S2-S2' positions of the active site. The 192 residue of serine proteases generally plays an important role in interactions with substrates. We therefore investigated the role of Lys628 (192) in interactions with C4 by altering the Lys residue to either a Gln (found in many other serine proteases) or an Ala residue. The mutant enzymes had altered specificity profiles for a combinatorial peptide substrate library, suggesting that this residue does influence the active site specificity of the protease. Generally, the K628Q mutant had greater activity than wild type enzyme against peptide substrates, while the K628A residue had lowered activity, although this was not always the case. Against peptide substrates containing physiological substrate sequences, the K628Q mutant once again had generally higher activity, but the activity of the wild type and mutant enzymes against a C4 P4-P4' substrate were similar. Interestingly, alteration of the K628 residue in C1s had a marked effect on the cleavage of C4, reducing cleavage efficiency for both mutants about fivefold. This indicates that this residue plays a different role in cleaving protein versus peptide substrates and that the Lys residue found in the wild type enzyme plays an important role in interacting with the C4 substrate. Understanding the basis of the interaction between C1s and its physiological substrates is likely to lead to insights that can be used to design efficient inhibitors of the enzyme for use in treating diseases caused by inflammation as result of over-activity of the classical complement pathway.

15.
PLoS Negl Trop Dis ; 8(5): e2872, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24854034

RESUMO

Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.


Assuntos
Lectina de Ligação a Manose da Via do Complemento/efeitos dos fármacos , Sarcoptes scabiei/enzimologia , Serina Proteases/metabolismo , Serina Proteases/farmacologia , Sequência de Aminoácidos , Animais , Complemento C1q/antagonistas & inibidores , Complemento C1q/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lectina de Ligação a Manose/antagonistas & inibidores , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Escabiose/metabolismo , Alinhamento de Sequência , Serina Proteases/química , Serina Proteases/genética
16.
Angew Chem Int Ed Engl ; 53(15): 3947-51, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24615823

RESUMO

Hirudin P6 is a leech-derived anti-thrombotic protein which possesses two post-translational modifications, O-glycosylation and tyrosine sulfation. In this study we report the ligation-based synthesis of a library of hirudin P6 proteins possessing homogeneous glycosylation and sulfation modifications. The nature of the modifications incorporated was shown to have a drastic effect on inhibition against both the fibrinogenolytic and amidolytic activities of thrombin and thus highlights a potential means for attenuating the biological activity of the protein.


Assuntos
Hirudinas/síntese química , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Glicoproteínas , Glicosilação , Hirudinas/química , Estrutura Molecular
17.
J Exp Med ; 210(12): 2569-82, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24190431

RESUMO

Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)-DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLA-DRB1*04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLA-DRB1*04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01(+) individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4(+) T cells in the peripheral blood of HLA-DRB1*04:01(+) RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/metabolismo , Agrecanas/genética , Agrecanas/imunologia , Agrecanas/metabolismo , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Artrite Reumatoide/metabolismo , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citrulina/metabolismo , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Estudos de Associação Genética , Cadeias beta de HLA-DR/química , Cadeias beta de HLA-DR/genética , Cadeias beta de HLA-DR/metabolismo , Antígeno HLA-DR4/química , Antígeno HLA-DR4/genética , Antígeno HLA-DR4/metabolismo , Cadeias HLA-DRB1/química , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Polimorfismo Genético , Vimentina/genética , Vimentina/imunologia , Vimentina/metabolismo
18.
Curr Opin Struct Biol ; 23(6): 820-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932199

RESUMO

Complement represents a major bridge between the innate and adaptive immune systems of the body. It plays a vital role in host defences against pathogens, but has also been implicated in numerous inflammatory diseases. The system has been the subject of intensive research in recent times with a number of key structural insights into the functioning of the system. Here, we will give an overview of the activation of each pathway, following which recent developments in our understanding of the mechanisms governing the interaction between enzymes and substrates in the classical and lectin pathways in particular will be discussed.


Assuntos
Lectinas/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Humanos , Ligação Proteica
19.
J Biol Chem ; 288(31): 22399-407, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23792966

RESUMO

The mannose-binding lectin associated-protease-3 (MASP-3) is a member of the lectin pathway of the complement system, a key component of human innate and active immunity. Mutations in MASP-3 have recently been found to be associated with Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome, a severe developmental disorder manifested by cleft palate, intellectual disability, and skeletal abnormalities. However, the molecular basis for MASP-3 function remains to be understood. Here we characterize the substrate specificity of MASP-3 by screening against a combinatorial peptide substrate library. Through this approach, we successfully identified a peptide substrate that was 20-fold more efficiently cleaved than any other identified to date. Furthermore, we demonstrated that mutant forms of the enzyme associated with 3MC syndrome were completely inactive against this substrate. To address the structural basis for this defect, we determined the 2.6-Å structure of the zymogen form of the G666E mutant of MASP-3. These data reveal that the mutation disrupts the active site and perturbs the position of the catalytic serine residue. Together, these insights into the function of MASP-3 reveal how a mutation in this enzyme causes it to be inactive and thus contribute to the 3MC syndrome.


Assuntos
Anormalidades Múltiplas/enzimologia , Blefaroptose/enzimologia , Anormalidades Craniofaciais/enzimologia , Craniossinostoses/enzimologia , Criptorquidismo/enzimologia , Cristalografia por Raios X/métodos , Anormalidades do Olho/enzimologia , Cardiopatias Congênitas/enzimologia , Luxação Congênita de Quadril/enzimologia , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Estrabismo/enzimologia , Músculos Abdominais/anormalidades , Músculos Abdominais/enzimologia , Deficiências do Desenvolvimento/enzimologia , Ativação Enzimática , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
20.
J Biol Chem ; 288(22): 15571-80, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589288

RESUMO

The serine protease, C1r, initiates activation of the classical pathway of complement, which is a crucial innate defense mechanism against pathogens and altered-self cells. C1r both autoactivates and subsequently cleaves and activates C1s. Because complement is implicated in many inflammatory diseases, an understanding of the interaction between C1r and its target substrates is required for the design of effective inhibitors of complement activation. Examination of the active site specificity of C1r using phage library technology revealed clear specificity for Gln at P2 and Ile at P1', which are found in these positions in physiological substrates of C1r. Removal of one or both of the Gln at P2 and Ile at P1' in the C1s substrate reduced the rate of C1r activation. Substituting a Gln residue into the P2 of the activation site of MASP-3, a protein with similar domain structure to C1s that is not normally cleaved by C1r, enabled efficient activation of this enzyme. Molecular dynamics simulations and structural modeling of the interaction of the C1s activation peptide with the active site of C1r revealed the molecular mechanisms that particularly underpin the specificity of the enzyme for the P2 Gln residue. The complement control protein domains of C1r also made important contributions to efficient activation of C1s by this enzyme, indicating that exosite interactions were also important. These data show that C1r specificity is well suited to its cleavage targets and that efficient cleavage of C1s is achieved through both active site and exosite contributions.


Assuntos
Complemento C1r/química , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Proteólise , Domínio Catalítico , Complemento C1r/genética , Complemento C1r/metabolismo , Ativação Enzimática/fisiologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...